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Flow cytometric analysis allows rapid single cell interrogation of
surface and intracellular determinants by measuring fluorescence
intensity of fluorophore-conjugated reagents. The availability of
new platforms, allowing detection of increasing numbers of cell
surface markers, has challenged the traditional technique of iden-
tifying cell populations by manual gating and resulted in a growing
need for the development of automated, high-dimensional ana-
lytical methods. We present a direct multivariate finite mixture
modeling approach, using skew and heavy-tailed distributions, to
address the complexities of flow cytometric analysis and to deal
with high-dimensional cytometric data without the need for pro-
jection or transformation. We demonstrate its ability to detect rare
populations, to model robustly in the presence of outliers and
skew, and to perform the critical task of matching cell populations
across samples that enables downstream analysis. This advance
will facilitate the application of flow cytometry to new, complex
biological and clinical problems.

finite mixture model � flow cytometry � multivariate skew distribution

Flow cytometry transformed clinical immunology and hematol-
ogy over 2 decades ago by allowing the rapid interrogation of cell

surface determinants and, more recently, by enabling the analysis
of intracellular events using fluorophore-conjugated antibodies or
markers. Although flow cytometry initially allowed the investiga-
tion of only a single fluorophore, recent advances allow close to 20
parallel channels for monitoring different determinants (1–4).
These advances have now surpassed our ability to interpret man-
ually the resulting high-dimensional data and have led to growing
interest and recent activity in the development of new computa-
tional tools and approaches (5–8).

The difficulty in data analysis arises from the traditional tech-
nique of identifying discrete cell populations by manual gating,
which is a labor-intensive process and varies by user experience. The
initial computational packages for flow cytometric analyses focused
largely on different preprocessing tasks such as data acquisition,
normalization, and live cell gating. Besides visualization and trans-
formation of flow cytometric data, useful tools such as Flowjo
(www.flowjo.com) and the packages in BioConductor (www.bio-
conductor.org) (such as prada, flowCore, flowViz, flowUtils, and
rflowcyt) allow some form of software-assisted gating and extrac-
tion of populations of interest. The operator subjectively demar-
cates a cell population while moving through successive 2- or
3-dimensional projections of the data. This process limits the
reproducibility of data processing. A more fundamental problem is
that this lower dimensional visualization hinders the identification
of higher-dimensional features. Furthermore, current methods
extract only a limited number of sample parameters, such as the
mean fluorescence intensity of a cell population, which can lead to
loss of critical information in defining the properties of a cell
population.

Although mathematical modeling of the fluorescence intensity
distribution of cell populations in higher dimensional flow cyto-

metric data can address these issues, there are significant chal-
lenges. First, these populations tend to be noisy, to contain outliers,
and, generally, are not symmetrically distributed. This suggests that
standard Gaussian mixture approaches to model cell populations,
such as those used in Demers et al. (9) and more recent studies (6–8),
will often be insufficient and may cause spurious splits leading to an
inaccurate count of populations during sample analysis.

Another challenge derives from the difficulty of correctly and
efficiently matching corresponding populations across multiple
samples in preparation for comparisons across phenotypes or time
points. This matching process is key to building classification and
prediction algorithms that employ flow cytometric data from
patient samples for clinical applications such as diagnosis and
prognosis. Notably, a traditional k-partite graph matching formu-
lation of this problem, given k samples in 3 or more dimensions, is
a member of the nondeterministic polynomial (NP)-complete class
of computationally intractable problems (10).

Here, we report the development of a new computational
approach for modeling high-dimensional cytometric data directly,
without the need to project into lower dimensions or to transform
it to reduce asymmetry (5). Such transformations can diminish skew
but may lead to less accurate models. Our method is based on finite
mixture model clustering techniques. Although mixture modeling is
not a new concept in statistics or in modeling flow cytometric data
(5–9), we break new ground by introducing (i) the use of multivar-
iate skew t mixture models ideally suited for directly modeling flow
cytometric data, (ii) algorithms for estimating these multivariate
models, and (iii) a method to address the challenging issue of
matching cell populations across samples. The use of non-Gaussian
distributions in finite mixture modeling is challenging and has only
recently been addressed (11, 12).

To enable unsupervised learning of non-Gaussian populations,
our multivariate skew t modeling methods use theoretically well-
studied high-dimensional distributions (13) that are robust against
outliers and skew. This yields clusters, which provide ‘‘automatically
gated’’ populations in a sample and, importantly, describe each
population with multivariate parameters. We then employ a
2-tiered metaclustering algorithm that matches corresponding pop-
ulations across samples despite intersample variation. The rigorous
model-based estimation of parameters and population association
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enables sophisticated, quantitative downstream analyses, such as
classification and prediction of clinically relevant phenotypes.

In this article, we describe our approach and demonstrate its
ability to model robustly in the presence of outliers and skew, to
identify a rare cell population, and to characterize and match cell
populations across samples. We refer to the method as flow analysis
with automated multivariate estimation (FLAME), and make it
freely available in a software package with the same name.

Results
Overview of the FLAME Method. We developed FLAME to define
and characterize discrete populations within a mixture of cells
interrogated by flow cytometry without prior knowledge of the
number or specific properties of the populations, without transfor-
mation to diminish skew, and without the bias of sequential
2-dimensional gating or of selective use of dimensions in the
analysis. The fundamental assumption is that we can effectively
model such cell populations with a corresponding mixture of
skewed and heavy-tailed multivariate probability distributions.
Once the mixture model is built, any desired statistical inquiry
regarding the biological populations can be translated into an
appropriate test or analysis of the mixture model parameters.

FLAME starts with a collection of samples for which k-
dimensional flow cytometric data has been acquired, quality-
controlled and tabulated into an .fcs file, the standard format for
this type of data. We extract from each file an m row by k column
matrix, corresponding to intensity values of k markers/antibodies
for m cells. Data from tens to hundreds of thousands of cells may
be available for each sample. Our task is to find the best description
of each sample as a heterogeneous mixture of g populations of cells
each modeled by a k-variate distribution. There are 4 main steps in
the method that we describe below (see Methods and SI Appendix
for additional details and Fig. S1 in SI Appendix for the data flow).

Step 1. Automated discovery of cell populations in each sample. For
a range of values of g, we use maximum likelihood estimation via
the Expectation-Maximization (EM) algorithm to optimally fit the
parameters for the k-variate distributions used to model the g
populations (14). By default, we use the skew t distribution for
modeling. This step can be done in a completely unsupervised
fashion, using no a priori knowledge of the data or the markers, or
can be guided if ancillary information is available. The output of this
step is a preferred model, or clustering, of g cell populations, along
with a set of characteristic parameters for each sample and each
value of g in the range tested.

Step 2. Determining the appropriate number of populations within
each sample. For each sample, we assess the candidate models’ fit
by a novel measure, the Scale-free Weighted Ratio (SWR), a
weighted ratio of average intracluster scale-free distance to average
intercluster scale-free distance and choose the value of g that
minimizes the SWR. Average Mahalanobis distances, normalized
for the distinct variances (which determine shape, dispersion,
orientation, etc.) of different populations, are computed for pairs
of points within and across clusters. By weighting these average
distances we restrict outlier cells from influencing the number of
populations. The resulting model optimizes both intercluster het-
erogeneity and intracluster homogeneity.

Step 3. Registering cell populations across samples. To match pop-
ulations across samples, we use a 2-tiered approach. First, we
identify the modes of all of the populations in each sample based
on the mixture model (Step 1). These population ‘‘locations’’ for all
of the samples in a class are then pooled and clustered using PAM
(Partitioning Around Medoids) (15) to construct a template of
locations for the global ‘‘metaclusters.’’ The optimal number of
metaclusters in the template is determined by a measure of overall
cluster stability known as the average silhouette width (15). Next, we
refine the assignment of every sample’s populations to the meta-
clusters of the template with a bipartite matching algorithm on
population modes and metacluster locations, which takes into
account the proportions of cells in each sample’s subpopulations.
This step also helps to detect extra or missing populations and to
recombine spurious splits.

Step 4. Downstream analysis. Once steps 1–3 are complete, param-
eters of the corresponding clusters are available for identification of
important features, and subsequent analyses or visualization can be
carried out to address biological questions.

Enhanced Fitting of Natural Distributions of Cell Surface Marker
Expression. We first show how FLAME’s use of the skew t distri-
bution provides more accurate modeling of the skewed cell popu-
lations. Accuracy in these measurements enhances statistical power
in downstream analyses. This is important when studying modest
effects on gene expression associated with genetic variation.

We interrogated a lymphoblastic cell line derived from B cells
infected in vitro with the Epstein–Barr virus. Pertinent here is the
single cluster of genetically identical cells in this cell line. The
contours of the density plot of the data derived after staining the
cells with anti-HLA DQ and anti-CD95 antibodies (Fig. 1A)
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Fig. 1. Enhanced fit using skew distribution with FLAME. (A) Expression of HLA-DQ and CD95 in a lymphoblastic cell line: A representative sample from 194
cell lines is plotted with hue intensity representing data density. The data contours, in white, show a single unimodal asymmetric population of cells. The mode
estimated by skew-t modeling (cyan dot) coincides with the highest percentile contour. (B) Gaussian mixture modeling (MCLUST) yields 2 distinct subpopulations.
The true (cyan dot) and estimated (center of cross) modes do not coincide. (C) FLAME fits a single skew t distribution capturing the asymmetry in 1(a) and correctly
estimating the mode.
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revealed a single, skewed unimodal population of live cells that
expressed these 2 markers (see also SI Appendix, Fig. S2). This
single, skewed population is a challenge to packages that employ
symmetric, Gaussian distributions for mixture model-based clus-
tering, e.g., EMMIX (11) or MCLUST (16), which can split the
population of cells in a spurious manner (Fig. 1B). Notably, the use
of the heavy-tailed skew t distribution by FLAME (Fig. 1C) resulted
in far better estimates of the true distribution of this cell population
and the mode’s location (Fig. 1 A and B).

Phenotyping Genotypic Classes of Lymphoblastic Cell Lines. Given our
method’s ability to fit flow cytometric data, we next compared the
results of analyses using FLAME with manually preprocessed data.
We used data generated by another project, in which we cultured
lymphoblastic cell lines from 194 different individuals under tightly
regulated conditions and captured the expression of cell surface
markers, including HLA DQ, using a panel of fluorescently labeled
monoclonal antibodies. Using manually processed data, we identi-
fied the association (P � 2.3 � 10�8) of increased expression of the
HLA DQ molecule to the ‘‘G’’ allele of rs9272346, a single
nucleotide polymorphism found in the promoter region of the HLA
DQA1 gene, one of the component genes of the HLA DQ het-
erodimer (17). With FLAME-derived measurements, we con-
firmed this association between the rs9272346G allele and higher
expression of HLA DQ (P � 1.31 � 10�9). Thus, both manual and
FLAME processing returned the same, highly significant result
confirming the comparability of FLAME’s automatically derived
parameters to those obtained by a skilled operator.

Automated Discovery of a Rare Subpopulation of Regulatory T Cells.
We next sought to evaluate the effectiveness of our automated
method in an unsupervised discovery mode by determining
whether FLAME could discover a known rare cell population.

Notably, we uncovered the complex cell population structure found
in a sample of human peripheral blood mononuclear cells (PBMC)
and identified an important, distinct, low frequency cell population.

Specifically, we targeted a recently discovered, relatively rare
cell population, CD4�CD25high natural regulatory T cells, that
plays an important role in autoimmunity (18). In humans this
population can be identified in peripheral blood using 4 infor-
mative markers: CD4, CD25, Foxp3, and HLA DR (19). None
of these markers is unique to regulatory T cells, which can be
defined as CD4�CD25highFoxp3�HLA DR�. We used FLAME
in a 2-step manner to analyze peripheral blood mononuclear cells
(PBMC) stained for these 4 markers. First, we fit skew t distribu-
tions to the 4-dimensional data, and obtained an optimal model of
19 clusters. Of these, clusters 2 and 5, which contain
CD4�CD25�DR�Foxp3� cells (Fig. 2 A and B) were candidates
for further investigation. Cluster 2 had lower mean CD4 expression,
and the forward- and side-scatter values confirmed that this cell
population of large, very granular cells consists of activated T cells
and not regulatory T cells (Fig. 2B). Further examination of cluster
5, with a second round of clustering, returned an optimal model of
9 subpopulations (Fig. 2D), one of which (cluster 5.9) had the
expected high levels of Foxp3 and CD25 expression that charac-
terize regulatory T cells. Cluster 5.9 contains 0.81% of the PBMC
sample, a fraction that is consistent with the expected frequency of
regulatory T cells. This example illustrates FLAME’s ability to
identify a rare but important cell population within a PBMC sample
in the absence of a specific marker. It also illustrates the power of
FLAME to decompose a mixture of cells into its component parts
so that each cell cluster or subcluster can be targeted for cell sorting
and further functional characterization.

Quantifying Differences in Naı̈ve and Memory T Cell Phosphorylation
in a Cohort of Subjects. Here, we assessed the ability of FLAME to
identify the corresponding cell populations across a cohort of
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Fig. 2. Automated discovery of a rare subset of regulatory T cells with FLAME. (A) 3-dimensional projection (for markers CD4, CD25, Foxp3) of the stained PBMCs.
FLAME’s 4-variate modeling yielded 19 clusters as optimal. Cluster 5 (orange) has high expression of CD4 and CD25, rendering it the best candidate to represent
the regulatory T cell population. (B) Clusters’ expression profiles as a heat map of the 4 markers, FSC and SSC. Lower CD4 and high FSC and SSC in cluster 2 suggest
activated T cells rather than regulatory T cells. (C) Subclustering of cluster 5 yields an optimal model of 9 subpopulations. Subcluster 9 (purple) matches the
CD4�DR�CD25brightFoxp3� of regulatory T cells. Subclusters 1–8 are in green. (D) The heat map shows that subcluster 9 has the highest expression levels of DR,
CD25 and Foxp3, and is 0.81% of live PBMCs, consistent with an expected frequency of �1%.
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subjects by forming ‘‘metaclusters’’ to assess differences between
classes of subjects or experimental conditions.

We reanalyzed raw flow cytometric data generated ex vivo by
Maier and colleagues to determine differences in phosphorylation
events downstream of T cell receptor activation in naı̈ve and
memory T cells (20). For each of the 30 subjects, whole blood was
stained using labeled antibodies against CD4, CD45RA, SLP76
(pY128), and ZAP70 (pY292) before stimulation with an anti-CD3
antibody (baseline measurement), and another aliquot underwent
the same staining procedure 5 min after stimulation.

FLAME segregated the baseline data into 5 cell clusters (Fig. 3
A and B); 2 of these clusters represent the naı̈ve
(CD4�CD45RAhigh) and memory (CD4�CD45RAlow) T cell sub-
sets. The large shift in phosphorylation of SLP76 after stimulation
is clearly visible (Fig. 3C). In 2 metaclustering steps, we first
assigned each individual’s cell clusters to metaclusters within the
prestimulation and poststimulation cohorts, and then identified
corresponding metaclusters across these 2 cohorts (SI Appendix,
Fig. S3). Importantly, despite the large phosphorylation shift, we
note that FLAME identified the correct correspondence of each
sample’s prestimulation and poststimulation cell subpopulations.
Moreover, when we extracted parameters, we replicated the results
found in manually derived data (20), e.g., that memory T cells
displayed a lower baseline SLP76 phosphorylation level than naı̈ve
T cells (P � 5.7 � 10�5). Further, by matching samples pre- and
postsimulation, we found that naı̈ve T cells displayed a greater
fold-induction in SLP76 phosphorylation (P � 0.01) (20) than
memory T cells do. Similar results were obtained for ZAP70 (P �
2.2 � 10�4). Thus, FLAME provided objective, robust, reproduc-
ible, automated analysis of data collected on different days across
a cohort of subjects.

FLAME can extract many more parameters than a human
operator using routine methods. The major difference that a human
operator would observe is the poststimulation increase in certain
cell populations’ levels of SLP76 phosphorylation (Fig. 3C). How-
ever, FLAME also captured additional parameters from each cell

cluster (SI Appendix, Table T1) that describe its shape and spatial
orientation. These parameters can be informative, as illustrated in
Fig. 3 A and B. The shapes of the 2 CD4� clusters were narrowed
after T cell receptor stimulation. Importantly, we quantitatively
captured this difference using a feature selection method. The
result of this analysis is displayed as a heat map in SI Appendix, Fig.
S4 that highlights the clear differences observed in this geometric
feature and in many other parameters.

In this example, we have shown FLAME’s ability to (i) perform
matching of cell populations within and across cohorts of samples,
(ii) extract features that can be used to compare different classes of
samples or subjects, and (iii) recapitulate the manual data process-
ing of a trained human operator.

Discussion
Computational modeling of flow cytometric data is receiving
increasing attention with the rapidly rising number of simulta-
neously monitored markers. Gaussian mixture modeling for flow
cytometry was introduced by Demers and colleagues (9) and is the
subject of ongoing development (6–8). However, the use of Gauss-
ian distributions can cause spurious splits because of outliers and
skew in the data as shown in Fig. 1. Lo and colleagues (5) address
this issue in flowClust by employing a Box-Cox transformation to
reduce skew, followed by an efficient t mixture modeling algorithm
originally introduced by Peel and McLachlan (11). However, even
in the 1-dimensional case this approach can yield indistinguishable
models for 2 very distinct forms of skew (see SI Appendix, SI
Discussion). On the other hand, our direct and parametric modeling
with skew t preserves the distinct nature of the original distributions
and precisely models the asymmetry and ‘‘heavy tails’’ of the data.
Importantly, this approach can capture phenotypic differences that
may be lost if the data were transformed to appear symmetric.

The metaclustering approach in FLAME matches corresponding
cell populations across samples. This registration is critical for
downstream analysis, e.g., class discovery or class prediction, and
not available in other methods. Metaclustering is stable with respect
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to the inherent biological variation as illustrated in the T cell
phosphorylation example and in simulation studies we performed
(see SI Appendix, SI Methods). However, metaclustering must be
used with care and with an understanding of the underlying biology
of the problem. For example, when identifying populations across
phenotypes or experimental conditions, it is critical to consider the
possibility of (i) new populations arising or (ii) differing proportions
of cells belonging to each subpopulation.

FLAME should be used at the distal end of a production pipeline
that includes a suite of QA/QC steps that minimizes experimental
noise. Several such approaches are in various stages of implemen-
tation (21, 22). Because FLAME uses the standard *.fcs as its input
format, it can be readily coupled to any commonly used prepro-
cessing method. Importantly, the user should know exactly how
their data are collected and processed and whether either will cause
artifacts, spikes, or boundary populations.

The advantage of FLAME’s ability to model a sample in the
multiple dimensions inherent in flow cytometry data is clear.
Because the number of surface markers simultaneously captured by
flow cytometry has grown over the past decade, human operators
can no longer directly visualize or analyze the data. The current
strategy to sequentially gate cell populations by projection to 2- or
3-dimensional space may be reasonable, particularly when a spe-
cific, predetermined cell population is sought. However, this ap-
proach has substantial limitations related to subjectivity, lack of
efficiency and reproducibility for the examination of large number of
samples, and loss of information for the multidimensional analysis
necessary for discovery of novel populations. In our examples, we have
shown that FLAME can recapitulate the data processing performed by
a trained human operator while extracting a greater number of param-
eters for use in classification or diagnostic tests.

Some past approaches (23–25) to automated multidimensional
flow cytometric analysis were restricted to supervised or nonpara-
metric techniques. The unsupervised learning methodology of
FLAME allows sensitive and more accurate exploratory identifi-
cation of new, and known, populations for high-dimensional flow
cytometric data. We process data in a pure discovery mode, evaluate
a range of models with different numbers of clusters and, using a
quantitative measure, identify an optimal solution that best fits
these data. Our approach is statistically rigorous and eliminates the
subjectivity of a human operator. Importantly, because we can use
skew distributions to model our data, extracted parameters offer a
better description of a cell population’s expression characteristics.

Although FLAME’s approach is rigorous and reproducible, it is
not rigid and can be adapted to a number of different study designs.
As illustrated in the regulatory T cell example, one can subcluster
a population to explore structure at a higher resolution. Further-
more, one can readily implement a gating step before or during the
FLAME analysis if certain cell populations are not of interest.
Similarly, once clusters of interest are discovered, the most infor-
mative dimensions can be defined and subsequently used with
FLAME in an identification mode. This enhances processing speed
and ensures that all samples are processed in the same manner.

There are many opportunities for further research and enhance-
ment of the systematic analysis of multiparametric flow cytometric
data as presented here. Instead of relying on the ‘‘one component,
one cluster’’ legacy of mixture modeling, the use of multicomponent
population models could yield more complex and even nonconvex
shapes. Here, FLAME might be extended with a hierarchical design
to address this need (SI Appendix, SI Discussion). Another challenge
is more sensitive detection of very small populations, which may
require the power of vastly increased sample sizes. One strategy
here is the stepwise approach described in the regulatory T cell
example above to focus on the subpopulation of greatest interest
followed by a second round of clustering to extract the rare cell
population.

The ‘‘Discovery’’ mode of FLAME is computationally intensive
as a range of models is evaluated for optimality. We estimate that

FLAME may require �30 min to discover the optimal model
(number of clusters) within a sample of 20,000 cells with 6-dimen-
sional data and 15 cell populations (see SI Appendix, SI Discussion).
However, once one or a small number of samples is run in this
manner, the range of models evaluated can be significantly reduced
for the remaining samples, resulting in faster processing speeds. The
Discovery mode is distinct from a ‘‘Clinical’’ mode in which the
desired number of clusters is known, and FLAME is simply used to
extract parameters on each cluster in large numbers of samples. In
Discovery mode, it is difficult to compare FLAME to a human
operator both because an operator does not consider more than 3
dimensions of information simultaneously and because such efforts
are not standardized. However, in Clinical mode, the comparison
is more pertinent as a precise set of parameters needs to be
extracted. Here, FLAME is able to process the sample of 20,000
cells with 6-dimensional data and 15 cell populations in �4 min (SI
Appendix, SI Discussion). This is comparable with a human operator
but is much more precise and reproducible.

In summary, we have devised a direct computational approach
for the rigorous, flexible, automated, multivariate analysis of flow
cytometric data, which handles outliers and skew without the need
of any preliminary transformation and includes a method for
identifying corresponding subpopulations of cells across samples.
The software implementation of this tool, when combined with rigor-
ous quality control of the production pipeline, can enhance the use of
the flow cytometric platform for disease diagnosis and clinical utility.

Methods
Data Preparation. Extraction of the matrix of marker/antibody intensity values
for each cell in a sample (with optional forward-scatter (FSC) and side-scatter
(SSC) columns) as described in Results above is performed with Bioconductor
(www.bioconductor.org) packages flowCore, prada and Biobase. The inten-
sities, but not the FSC and SSC, are transformed with a biexponential (Logicle)
transformation and the matrix is output as a *.txt file. Details of example
datasets are described in SI Appendix, SI Methods.

Identifying Cell Populations by Mixture Modeling of a Sample. FLAME fits each
cell population in a sample to a multivariate parametric cluster (a component)
with a full covariance matrix. The skew t distribution is used by default (SI
Appendix, Figs. S5 and S6). Alternatively, the user may choose to use t (Student t)
or skew normal distributions for modeling. Here, we describe the computations
for the skew t case (see SI Appendix, SI Methods for alternative distributions). We
model the k-dimensional data points in a sample Yi with the probability density
function (or pdf) f with unknown parameters � consisting of a mixture of g
components for a range of values of g in unknown mixing proportions p1, . . . , pg

(p1, . . . , pg�0; 	h�1...g ph � 1)

f
Yi, �� � �
h�1

g

phfh
y; �h, �h, Dh, �h� [1]

where fh(y;�h,�h,Dh,�h) is themultivariateskew tpdfforthehthcomponentwith
location vector �h, scale matrix �h, skew parameter Dh and degrees of freedom �h.
The multivariate skew t distribution is defined by introducing skewness in a
multivariate elliptically symmetric t distribution (26)

f
y; �, � D, �� � 2tk,�
y; �, 
�T��k
�/�� y � Rk, [2]

where 
 � � � DDT, � � DT
�1(y � �), �2 �
� � �

� � k

1 	 DT
�1D�, � �

(y � �)T
�1(y � �); tk,�(y; �, 
) is the pdf of a k-dimensional t distribution with �

degrees of freedom, mean 
, and scale covariance 
; T� � k(M)is the t distribution
function with � � k degrees of freedom. We fit the entire vector of unknown
parameters�� (
,�,D,�) totheflowcytometricdata,andestimatetheunknown
mixing proportions p1 . . . pg, using the expectation-maximization (EM) algo-
rithm (14). FLAME uses a newly developed multivariate skew density mixture
modeling EM program, which is freely available from the authors (www.math-
s.uq.edu.au/�gjm/EMMIX-skew). To speed up convergence, we perform 10 EM
iterationswith initializationbyak-meansalgorithm,andchoosetheonewiththe
largest log-likelihood as the initial condition for the rest of the EM iterations until
convergence. This entire process is repeated for all of the samples independently
for a range of g values from 2 to max {2k, 20}. The program also allows fitting for
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a specific range of g. The mixture model induces ‘‘soft’’ clustering, i.e., each data
point has a probability of belonging to each of the different components. To find
the optimal number of components, g*, for each sample, we assign each data
point i to the component with maximal posterior probability pi, then set g* to the
value of g that minimizes the scale-free weighted ratio (SWR) of average intra- to
intercluster distances, where

SWR �

� �
i, j�C

pipjdM
2 
i, j�� �

i, j�C

pipj

� �
i�C, j�C�,C�C�

pipjdM
2 
i, j�� �

i�C, j�C�,C�C�

pipj

and the scale-free Mahalanobis distance dM(i, j) between every pair of points (i,
j) in the sample is given by

dM
i, j� � � �
i 	 j�T �C
�1 
i 	 j� i, j � C

�
i 	 j�T
�C � �C��
�1
i 	 j� i � C, j � C�, C � C�.

The posterior probability pi of point i belonging to cluster C from the mixture
model is used for weighting the average distances and �c denotes the scale
variance of cluster C. The final mixture model output includes the multivariate
cluster parameters, mixture weights (or proportions), and cluster membership
labels for the original data points. Although FLAME assesses quality of fit using
SWR, the user can opt for other criteria (see SI Appendix, SI Methods).

Matching Populations Across Samples. To match populations and mixture model
parameters across samples, we perform metaclustering of populations using a
2-step strategy. For details see SI Appendix, SI Methods.

Step 1. PAM clustering. For a given class of samples, we first overlay all of the
cluster locations, represented by their modes, across the samples and then apply
the Partitioning Around Medoids (PAM) algorithm (15) to construct a high-
dimensional template of G metaclusters for that class specified by the locations
(high-dimensional medians, also known as ‘‘medoids’’) and the associated
weights (theproportionsof cells) for thesubpopulations.Themedoids computed
by PAM serve as natural metacluster locations. A metacluster’s weight is the
median weight of the c clusters closest to its location, c � (total number of clusters

in the metacluster)/5. The optimal number of metaclusters, G*, is determined by
maximizing the average silhouette width. We use PAM because of its robustness
to outlier effects. Thus, metaclusters are made of clusters, as represented by their
location representatives, and not the original data points.

Step 2. Bipartite matching. Clusters from every sample are matched to the
metaclusters of its class-template from Step 1 using an enhanced version of the
classical minimum cost bipartite matching problem. The matching problem is
formulated as integer programming (IP) and solved with a fast IP solver routine.
We seek to ensure that an optimal solution for a biologically homogeneous set of
samples matches clusters with metaclusters that have both similar locations and
weights. Importantly, in a given solution, multiple clusters could be matched to
one metacluster of combined weight (or capacity) and comparable location, and
vice versa. In this manner our approach handles missing, extra or spuriously split
clusters in the mixture model output of each sample (see SI Appendix, SI Meth-
ods).Notethat this secondstep isbothaglobal clusteringofclustersacrosssamples
according to location, and a feature registration or component labeling procedure
that matches the clusters from sample to sample.
For metaclustering of samples across 2 classes, we apply a similar bipartite
matching formulation to the templates of the compared classes and then extend
the obtained matching from the templates to the respective classes based on the
schemedescribedabove.Thefinal supersetofall labeledclustersbecomesthefull
set of features for the entire sample collection. Most features should be repre-
sented in every sample. However, this may not be the case because of biological
or technical variation. In that case, they are labeled as missing values in the
corresponding samples. Corresponding features across samples retain their own
parameters and weights.

Performing Association Testing to a Genetic Variation. We assessed the corre-
lation of our lymphoblastic cell line HLA DQ expression data to the rs9272346
single nucleotide polymorphism using the quantitative trait analysis module of
the PLINK software suite (pngu.mgh.harvard.edu/�purcell/plink and ref. 27).
Genotypes for each cell line were obtained from the HapMap project (www.hap-
map.org).

ACKNOWLEDGMENTS. We thank G. Gilliland and M. Kharas for discussions and
data, and J. Bistline and C. Lewis for assistance with figures. This work was
supported by the National Institutes of Health (S.P., X.H., E.R., C.B., P.T., D.A.H.,
P.L.D.J., and J.P.M.) and National Science Foundation (S.P., P.T., and J.P.M.);
National Multiple Sclerosis Society (D.A.H. and P.L.D.J.); the Australian Research
Council (K.W. and G.J.M.); the Juvenile Diabetes Foundation (L.M.M.); and the
National Science Council of Taiwan (T-I.L.).

1. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry:
Unravelling the immune system. Nat Rev 4:648–655.

2. De Rosa SC, Brenchley JM, Roederer M (2003) Beyond six colors: A new era in flow
cytometry. Nat Med 9:112–117.

3. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M (2001) 11-color, 13-parameter
flow cytometry: Identification of human naive T cells by phenotype, function, and
T-cell receptor diversity. Nat Med 7:245–248.

4. Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling
networks: Towards single-cell proteomics. Nat Rev 6:146–155.

5. Lo K, Brinkman RR, Gottardo R (2008) Automated gating of flow cytometry data via
robust model-based clustering. Cytometry A 73:321–332.

6. Wang H, Huang S (2007) Mixture-model classification in DNA content analysis. Cytom-
etry A 71:716–723.

7. Boedigheimer MJ, Ferbas J (2008) Mixture modeling approach to flow cytometry data.
Cytometry A 73:421–429.

8. Chan C, et al. (2008) Statistical mixture modeling for cell subtype identification in flow
cytometry. Cytometry A 73A:693–701.

9. Demers S, Kim J, Legendre P, Legendre L (1992) Analyzing multivariate flow cytometric
data in aquatic sciences. Cytometry 13:291–298.

10. Shatsky M, Shulman-Peleg A, Nussinov R, Wolfson HJ (2005) Recognition of binding
patterns common to a set of protein structures. Res Comput Mol Biol Proc 3500:440–455.

11. Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat
Comp 10:339–348.

12. Lin TI, Lee JC, Hsieh WJ (2007) Robust mixture modeling using the skew t distribution.
Stat Comp 17:81–92.

13. Genton MG (2004) Skew-Elliptical Distributions and Their Applications : A Journey
Beyond Normality (Chapman, Hall/CRC, Boca Raton, FL).

14. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data
via em algorithm (with discussion). J R Stat Soc Ser B 39:1–38.

15. Kaufman L, Rousseeuw PJ (2006) Finding Groups in Data: An Introduction to Cluster
Analysis (Wiley, John & Sons, Hoboken, NJ).

16. Fraley C Raftery AE (2002) Model-based clustering, discriminant analysis, and density
estimation. J Am Stat Assoc 97(458):611–631.

17. Choy E, et al. (2008) Genetic analysis of human traits in vitro: Drug response and gene
expression in lymphoblastoid cell lines. PLoS Genet 4:e1000287.

18. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance
maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Break-
down of a single mechanism of self-tolerance causes various autoimmune diseases.
J Immunol 155:1151–1164.

19. Baecher-Allan C, Wolf E, Hafler DA (2006) MHC class II expression identifies functionally
distinct human regulatory T cells. J Immunol 176:4622–4631.

20. Maier LM, Anderson DE, De Jager PL, Wicker LS, Hafler DA (2007) Allelic variant in
CTLA4 alters T cell phosphorylation patterns. Proc Natl Acad Sci USA 104:18607–18612.

21. Le Meur N, et al. (2007) Data quality assessment of ungated flow cytometry data in high
throughput experiments. Cytometry A 71:393–403.

22. Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay P, Roederer M (2006) Quality
assurance for polychromatic flow cytometry. Nat Protoc 1:1522–1530.

23. Costa ES, et al. (2006) A new automated flow cytometry data analysis approach for the
diagnostic screening of neoplastic B-cell disorders in peripheral blood samples with
absolute lymphocytosis. Leukemia 20:1221–1230.

24. Roederer M, Moore W, Treister A, Hardy RR, Herzenberg LA (2001) Probability binning
comparison: A metric for quantitating multivariate distribution differences. Cytometry
45:47–55.

25. Toedling J, Rhein P, Ratei R, Karawajew L, Spang R (2006) Automated in-silico detection
of cell populations in flow cytometry readouts and its application to leukemia disease
monitoring. BMC Bioinf 7:282.

26. Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry
with emphasis on a multivariate skew t-distribution. J R Stat Soc Ser B 65(2):367–
389.

27. Purcell S, et al. (2007) PLINK: A tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet 81:559.

8524 � www.pnas.org�cgi�doi�10.1073�pnas.0903028106 Pyne et al.

http://www.pnas.org/cgi/data/0903028106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0903028106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0903028106/DCSupplemental/Appendix_PDF

